University of Basrah/College of Pharmacy

Statistical (Measures of Dispersion)

2025/12/8

Dr. Rana Hasan

Dispersion: is the distance(deviation) away from the center (mean). The distance away from the center is expressed as:

$$(x_i - \overline{x})$$

 \diamondsuit If we have the following values, $x_1, x_2, x_3, \dots, x_n$, then the mean is:

$$\overline{x} = \frac{\sum x_i}{n}$$

Where:

- x_i = each value
- n = total number of values

Remark: The sum of the deviations of the values from their mean is zero.

$$\therefore \sum (x_i - \overline{x}) = \mathbf{0}$$

Prove $\sum (x_i - \overline{x}) = 0$??

Proof: $\sum_{i=1}^{n}(x_i-\overline{x})=\sum_{i=1}^{n}x_i-\sum_{i=1}^{n}\overline{x}=\sum_{i=1}^{n}x_i-n\overline{x}$

$$= \sum_{i=1}^{n} x_i - n \frac{\sum_{i=1}^{n} x_i}{n} = \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} x_i = 0$$

Example 1: These data show duration of hospital stay for 5 patients.

NO.	Duration of hospital stay	\overline{x}	$x_i - \overline{x}$
1	0	3	-3
2	1	3	-2
3	1	3	-2
4	2	3	-1
5	11	3	8
total	15		0

The mean for the data $\bar{x} = \frac{15}{5} = 3$

- * Measures of dispersion tell us "how dispersed" the values are from their center. measures of dispersion are numerous, e.g.
 - 1)Range (*R*).
 - 2) Variance (s^2).
 - 3) Standard deviation (*s*).
 - 4) Coefficient of variation (cv).

Range: The simplest measure of variability for a set of data is the range and is defined as the difference between the largest and smallest values in the set.

Range = maximum value - minimum value
$$R = max - min$$

Example 2: Find the range for the sample observations:

Solution: We see that the largest observation is 25 and the smallest observation is 11.

∴ Range is 25-11=14.

Example 3: A pharmacist measures the weights (mg) of 5 tablets from a batch to check uniformity. Tablet weights (mg):

498, 502, 505, 500, 497 , Calculate the Range??

Solution: Range = max - min

max = 505min = 497

Range =505-497=8 mg.

Variance (s^2) : is the mean sum of the squares of the deviations

of the data from the arithmetic mean of the data. Variance (s^2) can be calculated as follows:

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$
 Variance of sample

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$
 Variance of population

Where:

n: is the number of data.

 x_i : is the ith data point in the data set x.

 \overline{x} : is the mean of the data set x.

Example 4: These data show the weight (x) of 5 children (in kg) are (5,6,6,3,5) Calculate the variance??

Solution: Mean weight for these children $\overline{(x)} = \frac{25}{5} = 5$

x	\overline{x}	$x-\overline{x}$	$(x-\overline{x})^2$
5	5	0	0
6	5	1	1
6	5	1	1
3	5	-2	4
5	5	0	0
			Total=6

$$\sum (x - \overline{x})^2 = 6$$

$$n=5\rightarrow n-1=4$$

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1} = \frac{6}{4} = 1.5 \ kg^{2}$$

Example 5: A quality-control lab measures the dissolution percentage of a drug from 6 tablets, Dissolution %: 87, 90, 92, 88, 91, 89, Calculate the variance??

Solution:

$$\bar{x} = \frac{87 + 90 + 92 + 88 + 91 + 89}{6} = \frac{537}{6} = 89.5$$

x	\overline{x}	$x-\overline{x}$	$(x-\overline{x})^2$
87	89.5	-2.5	6.25
90	89.5	0.5	0.25
92	89.5	2.5	6.25
88	89.5	-1.5	2.25
91	89.5	1.5	2.25
89	89.5	-0.5	0.25
			Total=17.5

Variance of sample:
$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1} = \frac{17.5}{5} = 3.5$$

The standard Deviation (s)

Standard deviation (s) is the square root of the variance. The standard deviation can be calculated as follows:

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

Example 6: In example number 4, we found the variance to be equal to Variance $s^2 = 1.5 \, kg$, find Standard deviation (s)??

Solution: Standard deviation $s = \sqrt{s^2} = \sqrt{1.5} = 1.22 \ kg$

Example 7: Measuring the amount of active ingredient in eye-drop samples (mg/mL): 9.8, 10.2, 10.0, 9.7, 10.3 ,find **Range , Variance (sample), Standard deviation?**

Solution:

- Range = 10.3 9.7 = 0.6
- Variance (sample):

Mean
$$(\bar{x}) = 10$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n - 1}$$

$$=\frac{(9.8-10)^2+(10.2-10)^2+(10.0-10)^2+(9.7-10)^2+(10.3-10)^2}{4}$$

$$s^2 = 0.06$$

• Standard deviation:

$$s = \sqrt{s^2} = \sqrt{0.06} = 0.245$$

Coefficient of Variation (cv):

coefficient of variation (cv) is the percentage of the standard deviation to the mean, as follows:

$$cv = rac{standard\ deviation}{mean} imes 100\%$$
 $cv = rac{s}{\overline{x}} imes 100\%$

Example 8: these data show the weight (x) of 5 children (in kg). as previously calculated: $mean(\overline{x}) = 5 \text{ kg}$, standard deviation(s) =1.22 kg, find coefficient of variation (cv)?

Solution:
$$cv = \frac{s}{\bar{x}} \times 100\% = \frac{1.22 \times 100}{5} = 24.4\%$$

Example 9: We have a medication containing the following active ingredient (mg) in 5 capsules, Values: 98, 102, 100, 101, 99

Where $\bar{x} = 100$, and s = 1.58, find coefficient of variation (cv)?

Solution:
$$cv = \frac{s}{\bar{x}} \times 100\% = \frac{1.58 \times 100}{100} = 1.58 \%$$
.

Example 10: A company wants to evaluate the accuracy of a device for measuring drug concentration, We have 3 readings: 102, 100,98, where Where $\bar{x} = 100$, and s = 2, find coefficient of variation (cv)?

Solution:
$$cv = \frac{s}{\bar{x}} \times 100\% = \frac{2 \times 100}{100} = 2\%$$

H.W

- 1) If the deviations of 7 values from their mean are:
 - 2.2, -2.1, 0.1, -1.2, -0.7, k, 1.3 Find the value of k?
- 2) We have the following values 8,10,12,b,14, and their mean $\overline{x} = 11$, Find the value of b?
- 3) If the standard deviation = 2 and the mean = 7 for the following values: m, 9,7,5, Find the value of m?
- 4) We have data containing mean = 50, and coefficient of variation (cv)=10%, find standard deviation?